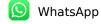
Техническая механика.(1)

- Приведены формулы для расчета угла подъема витка червяка: где р шаг; z1 число заходов червяка; d1 диаметр червяка; q—характеристика червяка (коэффициент диаметра). В какой формуле допущена ошибка?
- 2 Каким минимальным значением ограничивают угол захвата ремнем меньшего шкива в плоскоременных передачах?
- Какая из написанных зависимостей между межосевым расстоянием (α) и диаметрами зубчатых колес в редуцирующей передаче (d1, d2) неправильная, где u передаточное число?
- 4 Из отмеченных недостатков фрикционных передач: (смотри варианты). Какой пункт записан ошибочно?
- 5 Где следует размещать ролик в ременной передаче с натяжным роликом?
- (6) Чему равен угол вклинивания клиновых ремней?
- Укажите цепи, предназначенные для работы при больших скоростях.
- (8) Какие втулочные цепи выпускаются в настоящее время?
- 9 От чего не зависит коэффициент прочности зубьев по изгибным напряжениям (формы зуба)?
- (10) Стержень из малоуглеродистой стали шириной 30 см и толщиной 15 мм ослаблен заклепочным отверстием диаметром 23 мм, расположенным на оси стержня. Какое растягивающее усилие этот стержень может выдержать, если допускаемое напряжение равно 900 кг/см^2.
- (11) К тросу диаметром d = 10 мм подвешена клеть шахтного подъемника весом 100 кг. Длина троса, нагруженного лишь весом самой клети, равна 100 м; его длина, когда клеть загружена еще 400 кг руды, на 3 см больше. Определить модуль упругости троса.
- Стальной стержень длиной 6 м растянут силой 20 т; модуль упругости материала $E=2\times10^{\circ}6$ кг/см $^{\circ}2$, коэффициент поперечной деформации $\mu=0,25$. Определить увеличение объема стержня.

- Разрывающее усилие Р приложено к плоскому деревянному образцу сечением 2х4 см2 (см. рисунок). Предел прочности на растяжение для дерева равен 560 кг/см2? Чему при этом равно скалывающее напряжение в головках этого образца?
- Чугунная труба с наружным диаметром 25 см и толщиной стенки 1 см лежит на двух опорах, расположенных на взаимном расстоянии 12 м, и наполнена водой. Каковы наибольшие нормальные напряжения в трубе, если удельный вес чугуна 7,8 г/см3?
- Определить наружный диаметр полого стального вала, передающего мощность 9600 л.с. при частоте вращения 110 об/мин, если допускаемое касательное напряжение равно 560 кг/см2, а внутренний диаметр составляет 0,6 от внешнего.
- 16 К нижнему концу троса, закрепленного верхним концом, подвешен груз P = 7.5 т. Трос составлен из проволок диаметром d = 1 мм. Допускаемое напряжение для материала троса равно 3000 кг/см2. Из какого количества проволок должен быть составлен трос?
- Полый вал, соединяющий турбину и генератор в гидротехнической установке, имеет наружный диаметр 40 см и внутренний диаметр 22,5 см. Скорость вращения 120 об/мин. Чему равны наибольшие касательные напряжения при передаче валом 10000 л.с.?
- Мощность энергетических установок атомного крейсера «Петр Великий» примерно равна 103 МВт (140 000 л.с.) при максимальной скорости в 32 узла (60 км/час) и полном водоизмещении 25 860 т. Оцените время разгона этого крейсера до максимальной скорости при условии 100% использования мощности силовых установок. Все величины выражены в системе СИ.
- При вертикальном подъеме груза массой m = 4 кг на высоту h = 2 м. была совершена работа 88 Дж. Чему равно ускорение, с которым двигался груз? Все величины выражены в системе СИ.
- С какой начальной скоростью двигался автомобиль массой m = 2 тонны, если под действием тормозящей силы F = 2 кH он останавливается, пройдя расстояние 50 м.? Все величины выражены в СИ.
- (21) Маховик начал вращаться равноускоренно и за промежуток времени t=10 с. достиг частоты вращения n=300 оборотов в минуту. Какое число оборотов N, он успел сделать за это время?
- Велосипедное колесо вращается с частотой n=5 оборотов в секунду. Под действием сил трения оно остановилось через интервал времени $\Delta t=1$ мин. Чему равен модуль углового ускорения колеса ϵ ? Все величины выражены в системе СИ.

- Две материальные точки с массами m1=2 кг и m2=3 кг лежат на одной оси ОХ в точках с координатами x1=5 м, x2=10 м. Чему равна XC -координата точки центра масс такой системы? Все величины выражены в системе СИ.
- Под действием постоянной силы F = 50 H тело массой m = 100 кг увеличило за 10 секунд свою скорость до 54 км/час. Чему была первоначальная скорость тела? Все величины выражены в СИ.
- Три материальные точки с массами m1=4 кг, m2=m3=1 кг лежат в одной плоскости ОХҮ в вершинах правильного треугольника со стороной $\alpha=3$ м. Чему равно расстояние от точки центра масс такой системы до первой точки? Все величины выражены в системе СИ.
- 26 Из однородного листа стали вырезали пластину в форме прямоугольного треугольника с катетами α=18 см. и b=24 см. Чему расстояние от центра масс этой пластины до вершины прямого угла? Все величины выражены в системе СИ.
- (27) Чему равен момент инерции тонкой однородной сферы массой m=3 кг и радиуса R= 20 см относительно оси, касающейся поверхности сферы в одной из ее точек? Все величины выражены в системе СИ.
- Чему равен момент инерции однородного прямого цилиндра массой m=3 кг, высотой H=20 см и радиусом основания R= 20 см относительно оси, проходящей через центр круга в его нижнем основании перпендикулярно высоте цилиндра? Все величины выражены в системе СИ.
- 29 Атомная подводная лодка проекта 941 «Акула» с подводным водоизмещением 48 тысяч тонн находится на глубине 200 м. Чему равна работа силы Архимеда, совершаемая при всплытии лодки на поверхность? Ответы выражены в ГДж=109 Дж.
- Три материальные точки с одинаковыми массами m1=m2=m3=3 кг лежат в одной плоскости в вершинах правильного треугольника со стороной a=20 см. Чему равен J-полярный момент инерции такой системы относительно точки, расположенной в одной из его вершин? Все величины выражены в системе СИ.
- Две материальные точки с массами m1=2 кг и m2=1 кг соединены тонким невесомым стержнем длиной I=30 см. Чему равен JC –полярный момент инерции такой системы относительно его центра масс? Все величины выражены в системе СИ.
- (32) Какую наибольшую нагрузку может выдержать деревянный столб сечением 16х16 см при сжимающем напряжении не более 100 кг/см2.



- (33) Чугунная колонна высотой 3 м кольцевого поперечного сечения имеет наружный диаметр 25 см и толщину стенки 25 мм. Каково относительное сжатие колонны при нагрузке 50 тонн.
- (34) Чугунная колонна высотой 3 м кольцевого поперечного сечения имеет наружный диаметр 25 см и толщину стенки 25 мм. Каково абсолютное укорочение колонны при нагрузке 50 тонн.
- (35) Чугунная колонна высотой 3 м кольцевого поперечного сечения имеет наружный диаметр 25 см и толщину стенки 25 мм. Каково напряжения в поперечном сечении колонны при нагрузке 50 тонн.
- Две проволоки, одна стальная, другая медная, имеют одинаковую длину и нагружены одинаковыми осевыми растягивающими усилиями. Медная проволока имеет диаметр 1 мм. Чему равен диаметр стальной проволоки, если обе проволоки удлиняются на одинаковую величину?
- Оссновая стойка сечением 20х20 см опирается на дубовую подушку, как указано на рисунке. Допускаемое напряжение на смятие для сосны вдоль волокон равно 100 кг/см2, а для дуба поперек волокон 30 кг/см2. Определить предельную нагрузку на стойку.
- Стальной стержень круглого поперечного сечения ($d=32\,\text{мм}$ и длины $l=35\,\text{см}$) был растянут на испытательной машине усилием 13,5 т. Было замерено уменьшение диаметра, равное 0,0062 мм, и на длине 5 см удлинение, равное 0,040 мм. Чему равен модуль упругости?
- (39) Медный стержень диаметром 40 мм вставлен с очень малым зазором в стальную трубку с наружным диаметром 60 мм. На обоих концах стержень скреплен с трубкой жесткими шпильками диаметром 20 мм, проходящими через стержень и обе стенки трубки перпендикулярно к их оси. Определить касательные напряжения в шпильках, если температура всей конструкции повысилась на 40° С. При определении усилия деформацию шпильки не учитывать.
- Груз подвешен к стальной проволоке, размеры которой до деформации были следующими: I=3 м и d=1,6 мм. Удлинение проволоки оказалось равным 1,5 мм. Затем тот же груз был подвешен к медной проволоке длиной I=1,8 м и диаметром d=3,2 мм. Ее удлинение получилось равным 0,39 мм. Определить модуль упругости медной проволоки, если модуль стальной $E=2\cdot10^6$ кг/см2.

- балка прямоугольного поперечного сечения пролетом I = 4 м, свободно лежащая на двух опорах, загружена сплошной равномерно распределенной нагрузкой q = 4 т/м. Найти величину наибольших касательных напряжений в сечении посредине пролета балки, если размеры сечения 10х20 см2.
- Oпределить диаметр сплошного вала, передающего крутящий момент 1,5 тм, если допускаемое напряжение равно 700 кг/см2.
- Определить наименьший диаметр стального вала, передающего 18 л.с. при 120 об/мин, если допускаемый угол закручивания равен 1° на длине, равной 15 диаметрам вала.
- Стальной вал длиной 2 м и диаметром 5 см при нагружении его крутящим моментом 400 кгм закручивается на угол 9,2°. Предел пропорциональности для касательных напряжений равен 1700 кг/см2. Определить величину модуля упругости при сдвиге.
- Балка пролетом 2 м свободно лежит на двух опорах, имеет прямоугольное сечение шириной 6 см и высотой 10 см. Она нагружена сосредоточенной силой 0,5 т, приложенной посредине пролета, и сосредоточенной силой 1 т, приложенной на расстоянии 0,33 м от правой опоры. Определить нормальное напряжение в точке поперечного сечения, отстоящего на 0,33 м от левой опоры. Точка находится на расстоянии 2 см от верхней грани балки. Силы направлены сверху вниз.
- Балка длиной 6 м лежит на двух опорах, расположенных на взаимном расстоянии 4,5 м; причем правый конец балки свешивается на 0,5 м. Погонный метр балки весит 66 кг кроме того, на расстоянии 2,25 м от левой опоры балка нагружена сосредоточенной силой 1 т. Определить величину нагрузки, которую нужно приложить к концу левой консоли для того, чтобы изгибающий момент в сечении, где приложена сила 1 т, был бы равен нулю. Определить опорные реакции при этих условиях.
- 47 Чтобы уменьшить вес сплошного круглого вала на 20% его заменили полым, наружный диаметр которого в два раза больше внутреннего. Чему будут равны наибольшие касательные напряжения в полом вале, если в сплошном они были равны 600 кг/см2?
- (48) Полый стальной вал длиной 1,8 м нагружен крутящим моментом 0,6 тм. Определить наружный диаметр вала, если угол закручивания не должен превосходить 2°, а касательное напряжение 700 кг/см2.

- Сплошной вал диаметром 10 см и длиной 6 м закручен на угол 4°. Чему равно наибольшее касательное напряжение, если G = 8□105 кг/см2?
- Для определения мощности, передаваемой валом, замерялись при помощи тензометра удлинения по линии, расположенной под углом 45° к наружной образующей вала. Замеренное относительное удлинение оказалось равным $\epsilon=0,000425$. Наружный диаметр вала равен 40 см, а внутренний 24 см. Модуль упругости $G=8\cdot105$ кг/см2. Чему равна мощность, передаваемая валом, если он вращается со скоростью 120 об/мин?
- (51) Для каких целей нельзя применить зубчатую передачу?
- (52) Можно ли при неизменной передаваемой мощности с помощью зубчатой передачи получить больший крутящий момент?
- (53) Чтобы зубчатые колеса могли быть введены в зацепление, что у них должно быть одинаковым?
- (54) Полная высота зуба в нормальном (нарезанном без смещения) зубчатом колесе равна 9 мм. Чему равен модуль?
- (55) Диаметр окружности выступов нормального прямозубого зубчатого колеса равен 110 мм, число зубьев 20. Чему равен диаметр делительной окружности?
- (56) Механизм имеет несколько последовательных передач; при вращении ведущего вала со скоростью 1000 об/мин ведомый вращается со скоростью 80 об/мин. Как правильно назвать этот механизм?
- (57) Какая ременная передача допускает наибольшее передаточное отношение?
- При одинаковой толщине, какой из стандартных плоских ремней позволяет осуществить передачу с минимальными диаметрами шкивов?
- (59) Какая характеристика плоского ремня не регламентируется стандартом?
- (60) Какая цель преследуется введением ограничения на максимально возможное отношение толщины ремня к диаметру меньшего шкива?
- $\binom{61}{}$ К какому виду механических передач относятся цепные передачи?
- (62) При каком взаимном расположении валов возможно применение цепной передачи?

- (63) Укажите, с каким шагом приводные цепи стандартизованы? С шагом, кратным:
- (64) Какую длину цепи целесообразно назначать для цепной передачи?
- (65) К чему приводит износ цепи?
- $\stackrel{\textstyle (66)}{\textstyle (66)}$ В каком случае можно применить червячную передачу?
- 67 Как обычно в червячных передачах передается движение?
- (68) Какое значение кпд следует ожидать в самотормозящейся червячной передаче?
- $\binom{69}{}$ С чем связывают назначение длины червяка?
- Приведен ряд чисел: 5; 10; 15; 20; 30; 40; 50; 60; 70; 80. Сколько из них могут быть использованы для назначения числа зубьев червячного колеса в обычных силовых передачах?
- В машиностроении приходится создавать передачи между осями: 1) параллельными; 2) пересекающимися под некоторым углом; 3) пересекающимися под прямым углом; 4) скрещивающимися. В каком случае применение фрикционных передач практически невозможно?
- 72 Укажите передаточные механизмы, в которых фрикционные передачи получили наибольшее распространение.
- Для работы фрикционной передачи необходима сила, прижимающая катки друг к другу. Какова величина этой силы по отношению к полезному окружному усилию?
- Во фрикционной передаче с коническими катками между пересекающимися осями. Внешнюю прижимающую катки силу как следует прикладывать?
- Pасчеты показали, что во фрикционной передаче с точечным контактом рабочих тел допускаемые контактные напряжения могут быть увеличены вдвое. Во сколько раз увеличится нагрузочная способность передачи?

